-

Monday, 22 January 2018

Get started with keras for deep learning.

  • This post is for ultimate begginers in deep learning. It helps to get started with keras a python based deep learning package. Keras runs on backends like Theano, Tensorflow and CNTK. 
  • In this post, I will explain the setting up of Keras in your computer using backend as Tensorflow and running a simple multilayer perceptron using keras.
  • Step 0: Before starting make sure that you have installed,

     python 2.7 (prefered) or python 3,
     scipy, numpy, Matplotlib  
    
  •  Step 1: Now install the Tensorflow, if you have compute GPU in your computer then you can install GPU version of Tensorflow otherwise install CPU version of Tensorflow.

    Instructions to install Tensorflow : LINK

    you can check whether the packages are installed or not by simply importing them.
  •  $ python
    >>import tensorflow  
    >>print tensorflow.__version__  
    >>import numpy  
    >>print numpy.__version__  
    >>import scipy  
    >>print scipy.__version__   
    
  • Step 2: Installing Keras in Ubuntu
    $ sudo pip install keras
    $ python
    >>import keras
    >>using Tensorflow backend

    Example: Digit classification using multilayer perceptron (MLP) on MNIST dataset.

    
    
    #########Digit classification using MLP on MNIST dataset###
    import keras
    from keras.datasets import mnist
    from keras.models import Sequential
    from keras.layers import Dense, Dropout
    from keras.optimizers import RMSprop
    import matplotlib.pyplot as plt
    
    batch_size = 128
    num_classes = 10
    epochs = 20
    
    # the data, shuffled and split between train and test sets
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    
    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')
    
    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    
    model = Sequential()
    model.add(Dense(512, activation='relu', input_shape=(784,)))
    model.add(Dropout(0.2))
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(num_classes, activation='softmax'))
    
    model.summary()
    
    model.compile(loss='categorical_crossentropy',
                  optimizer=RMSprop(),
                  metrics=['accuracy'])
    
    history = model.fit(x_train, y_train,
                        batch_size=batch_size,
                        epochs=epochs,
                        verbose=1,
                        validation_data=(x_test, y_test))
    score = model.evaluate(x_test, y_test, verbose=0)
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])
    
    print(history.history.keys())
    # summarize history for accuracy
    plt.plot(history.history['acc'])
    plt.plot(history.history['val_acc'])
    plt.title('model accuracy')
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.legend(['train', 'test'], loc='upper left')
    plt.show()
    # summarize history for loss
    plt.plot(history.history['loss'])
    plt.plot(history.history['val_loss'])
    plt.title('model loss')
    plt.ylabel('loss')
    plt.xlabel('epoch')
    plt.legend(['train', 'test'], loc='upper left')
    plt.show()
    OutPut: The model.summary() gives the details about
    the network architecture and number of trainable and non-
    trainable parameters. 
    ____________________________________________________________
    Layer (type)              Output Shape            Param #   
    ==========================================================
    dense_4 (Dense)           (None, 512)             401920    
    __________________________________________________________
    dropout_3 (Dropout)       (None, 512)             0         
    ___________________________________________________________
    dense_5 (Dense)           (None, 512)             262656    
    ___________________________________________________________
    dropout_4 (Dropout)       (None, 512)             0         
    ___________________________________________________________
    dense_6 (Dense)           (None, 10)              5130      
    ===========================================================
    Total params: 669,706
    Trainable params: 669,706
    Non-trainable params: 0 

    Training and testing accuracy vs epoch are showin in the following figure.

    Training and testing loss vs epoch are showin in the following figure.

3 comments:

  1. I'm cheerful I found this blog! Every now and then, understudies need to psychologically the keys of beneficial artistic articles forming. Your information about this great post can turn into a reason for such individuals.
    certification of data science

    ReplyDelete
  2. Incredibly conventional blog and articles. I am realy very happy to visit your blog. Directly I am found which I truly need. Thankful to you and keeping it together for your new post.
    data analytics training in yelahanka

    ReplyDelete
  3. Amazing blog.Thanks for sharing such excellent information with us. keep sharing...
    ai training in noida

    ReplyDelete